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Abstract

The Finite Fourier Transformation matrix (F.F.T.) plays a central
role in the formulation of quantum mechanics in a finite dimensional
space studied by the author over the past couple of decades. An out-
standing problem which still remains open is to find a complete basis

for F.F.T. 1In this paper we suggest a simple algorithm to find the
eigenvectors of F.F.T.

Talk presented in the Second International Workshop on Harmonic Oscillators
held in Cocoyoc, Mexico during 23-25 March, 1994, to appear in the
Proceedings.
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I. INTRODUCTION

The f{inite Fourier transform matrix (F.F.T.) plays a fundamental
role in many contexts and has been studied extensively [1-3]. It is
central in the discussions on finite dimensional quantum mechanics based
on Weyl's commutation relations [4] studied by the author in a series of
publications [5]. The eigenvalues of this matrix were determined by
Schur {1] and a1 simple argument to recover this result has been given
earlier [6]. The calculation of the eigenvectors is not straight-
forward and many methods have been given in particular, by Mehta [7].

In Section IV, we present a new algorithm to find the eigenvectors.

II. EIGENVALUES OF S

The F.F.T. matrix S, which is unitary, is defined by

_ 1 214
Sc‘8~'/ﬁexp[n a Bl ,

a, B = 0,1,2,...n-1 (2.1)
i = /-1

and has many interesting properties
2

= ' =
D (s )aB I aB 6& + B, 0 (2.2)
(mod n)
Since 82 f =f¢ for a vector £ with n components, S2 is
o -a mod n, a

called the parity operator

4
2) (s )aB = GaB (2.3)
like the usual Fourier transform.
3) The matrix S, which is by definition a symmetric matrix will

diagonalize any circulant matrix.
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From Equation (?-3), it is clear that the eigenvalues of S are simply
41 and #i. There is then a degeneracy of the eigenvalues. The first
problem will be to determine this. Luckily, Equations (2.1)-(2.3) can be

k.,and k, denote the multi-

repeatedly used to fix this [6]. If kl’ k2, 3 4

plicity of the eigenvalues taken in the order (1, -1, i, -i), Equation

(2.1) implies that

Tr S = 5;-25; { exp-g%i ]P'2
= %—(1 + i) [ 1 + exp ( -i;n ) 1, (2.4)
and hence
Tr § = (k; - k) + i(ky - k,)
=1 for n = 4k + 1,
=0 for n = 4k + 2,
= i for n = 4k + 3,
= (1 + i) for n = 4k,
k = 0,1,2,... (2.5)

From Equation (2) we infer that

2— -
Tr §° = (k1 + k2) (k3 + ka)
=1 for n odd,
= 2 for n even.
We also have
4

Tr § = n = k1 + k2 + k3 + ké'

Equations (2.5), (2.6) and (2.7) can be used to solve for kl, k2, k3 and

k4 and one finds that
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k1 k+1 k+1 k +1 k+1
k2 k k +1 k+1 k
k3 k k k +1 k
k4 k k k k -1

III. EIGENVECTORS OF S
Let us decompose S into its primitive idempotents as

g
S= : i” B(j),

j=1
where
- 1 1 R
B(1) = 5S g (L - 1")
- .1 1 :
B(2) = 5 C + 4(1+1),
- 1 1 R
B(3) = 2S + 4 (I I ):
B(4) = +c + L(1+1) (3.2)
2 4 ?
C . cos ( 2 aB )
oB /ﬁ n
- 1 2m
S.g " 7 sin ( — aB )
a, = 0,1,2,...n-1 (3.3)
It is easily verified that
s B(j) = il B(§), (3.4)

thus the nonzero columnus of B(j) yield the eigenvectors of S with eigen-

J. Also, i% analogy with the standard case, Mehta [7] hag been

value i
able to express these eigenvectors in terms of Hermite functions with
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discrete arguments.

IV. EIGENVECTORS OF S; AN ALTERNATE METHOD
Since the F.F.T. matrix S satisfies Equation (2.1) we construct

the matrix [10]

.3 2 2 3
T = s"+5° 5, + 85, + 53
2
= '
I' (s + sd) + (s + sd) sd , (4.1)
where
Sy = diagonal §. (4.2)
We find that
_ 3 2 2 3
ST = S (8 +5S S+ S8y + sd)
_ 3 2 2 3
= (I + 8 S + S 5, + 8 sd)
_ 3 3 2 2
= (sd + §° + S8 sd + S sd) sd
= TS, (4.3)
If T is nonsingular,
™ osT = S4 (4.4)

Therefore, the columns of T automatically provide the eigenvectors of
S. The degenerate eigenvectors of S corresponding to the repeated eigen-
values can be made orthonormal by using Gram-Schmidt process. This will
render T unitary. While the process is quite general, we shall illustrate
this for some special cases

case of‘n = 2

= V%:<i i {) , (4.5)

w
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and

{1 o
Sy = <§ } 1) , (4.6)

Since 82 = §, =1, 4.7

We get from Equation (4.1)

T = 2 (5+58)),
=2/1+ 1 1
2 V2
1l -1 (4.8)
2 2
We unitarized matrix of the eigenvectors of S is therefore
VI +1 1
v, = 1 (4.9)
4
2v/2 (V2 + 1)
1 - (Y2 + 1)
case of n = 3
1 1 1
s = ;%— 1 ¢ ez
3
1 52 € s
e = exp E%L . (4.10)

From Equation (Z.q) we see that

1 0 o
Sy = 0 -1 0
0 0 i (4.11)

one finds from Equation (4.1) that the unitarized matrix of the eigen-

vectors of S is
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U, = 1 1
V2 /3 (/3 + 1)
1
case of n = 4
In this case we have
1 1 1 1
s - .% 1 i -1 -i
1 -1 1 -i
1 -i -1 i
and
1 0 0 0
0 1 0 0
Sd i 0 0 -1 0
0 0 0 i
It is easily calcylated that
3 1 1 0
1 1 -1 2i
T =
1 -1 -1 0
1 1 -1 -21

The first two column vectors

one to -1 and the last to -i.

S|+

1|+

0
i3 + /3
i3 + /3
(4.12)
(4.13)
(4.14)
(4.15)

correspond to the eigenvalue = +1, the third
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By a simple use of Gram-Schmidt orthogonalization procedure one

can find the unitarized matrix corresponding to the eigenvectors of S

as
3 0 V3 0
1 V2 -3 ive
Yy = = _ _
24 (V4 + 1) 1 -2/2 -v3 0
1 V2 -3 -ive (4.16)
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This can be easily generalized to An-1 + An-2 Ad + An-3 Aﬁ + ...
n-2 n-1
+ A Ad + Ad

the relation A" = 1. 248

for the case of a general involution matrix satisfying



